Название: Internet of Things Enabled Antennas for Biomedical Devices and Systems: Impact, Challenges and Applications Автор: Praveen K. Malik, Prasad N. Shastry Издательство: Springer Серия: Springer Tracts in Electrical and Electronics Engineering Год: 2023 Страниц: 269 Язык: английский Формат: pdf (true) Размер: 10.1 MB
The book consists of the latest research in biomedical and communication integration. It discusses the fabrication and testing outcomes of the Internet of Things-enabled biomedical applications. The book focuses on recent advances in the field of planar antenna design and their applications in space communication, mobile communication, wireless communication, and wearable applications. Planar antennas are also used in medical applications in microwave imaging, medical implants, hyperthermia treatments, and wireless wellness monitoring. This book presents planar antenna design concepts, methods, and techniques to enhance the performance parameters and applications for IoT and device-to-device communication. It provides the latest techniques used for the design of antennas in terms of their structures, defected ground, MIMO, and fractal design. This book also addresses the specific steps to resolve issues in designing antennas and how to design conformal and miniaturized antenna structures for various applications.
The Chapter 1 focuses on the application of microstrip patch antennae in ultra-wideband as well as ISM band for bio-medical and telemetry applications. The antenna discussed finds applications in Wireless Body Area Networks (WBAN), for wearable and implantable purposes. The utilization of a very thin substrate such as jeans for wearable purposes provides super-wideband bandwidth. The cotton and jeans material corresponds to the permittivity of 1.50 (thickness 0.242 mm) and 1.67 (thickness 0.75 mm) for wearable medical applications. The capsule antenna is used for deep tissue implantation use to study the human intestine and head at 2.45 and 0.91 GHz, respectively.
Скачать Internet of Things Enabled Antennas for Biomedical Devices and Systems: Impact, Challenges and Applications
|