Название: Дифференциальные уравнения: Учеб. для вузов / Агафонов С.А., Герман А.Д., Муратова Т.В. Автор: С.А. Агафонов Издательство: Изд-во МГТУ им. Н.Э. Баумана Год выпуска: 2004г Жанр: Mатематика студентам Формат: PDF Страниц: 348 Размер: 22,87 Мб Язык: Русский
Агафонов С.А., Герман А.Д., Муратова Т.В. Дифференциальные уравнения: Учеб. для вузов / Под ред. B.C. Зарубина, А.П. Крищенко. — 3-е изд, стереотип. -М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. — 352 с. (Сер. Математика в техническом университете; Вып. VIII). Изложены основы теории обыкновенных дифференциальных уравнений (ОДУ) и даны основные понятия об уравнениях с частными производными первого порядка. Авторы стремились объединить строгость изложения теории дифференциальных уравнений с прикладной направленностью ее методов. В связи с этим приведены многочисленные примеры из механики и физики. Отдельная глава посвящена линейным ОДУ второго порядка, к которым приводят многие прикладные задачи. Главу, посвященную изложению численных методов, следует рассматривать как вводную.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов и вузов. Может быть полезен интересующимся прикладными задачами теории дифференциальных уравнений.
Общие сведения о дифференциальных уравнениях. Теорема существования решения дифференциального уравнения первого порядка. Дифференциальные уравнения первого порядка. Системы обыкновенных дифференциальных уравнений. Системы линейных дифференциальных уравнений. Линейные дифференциальные уравнения высших порядков. Нули решений дифференциального уравнения второго порядка. Первые интегралы. Элементы теории устойчивости. Особые точки на фазовой плоскости. Краевые задачи для дифференциального уравнения. Приближенные методы решения дифференциальных уравнений. Дифференциальные уравнения первого порядка с частными производными.
Скачать книгу: Дифференциальные уравнения: Учеб. для вузов / Агафонов С.А., Герман А.Д., Муратова Т.В.
|