Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама




Название: Алгоритмические модели обучения классификации: обоснование, сравнение, выбор
Автор: Донской В.И.
Издательство: Симферополь: Диайпи
Год: 2014
Формат: pdf
Страниц: 228
Для сайта: mymirknig.ru
Размер: 11 mb
Язык: русский

В книге рассматриваются теоретические аспекты машинного обучения классификации. В центре изложения — обучаемость как способность применяемых алгоритмов обеспечивать эмпирическое обобщение. С обучаемостью непосредственно связаны вопросы сложности выборок, точности и надежности классификаторов. Большое внимание уделено алгоритмическим методам анализа процессов обучения и синтеза решающих правил, включая колмогоровский подход, связанный с алгоритмическим сжатием информации. Описаны принципы выбора моделей обучения и семейств классифицирующих алгоритмов в зависимости от постановок и свойств решаемых задач. Книга предназначается для специалистов, занимающихся теорией машинного обучения; она будет полезной для аспирантов, разработчиков интеллектуализированного программного обеспечения и студентов старших курсов математических специальностей, специализирующихся в указанной области.









НЕ РАБОТАЕТ TURBOBIT.NET? ЕСТЬ РЕШЕНИЕ, ЖМИ СЮДА!





Автор: na5ballov 4-10-2018, 07:50 | Напечатать | СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:
    {related-news}

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MyMirKnig.ru  ©2019     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности