Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Generative Adversarial Networks with Industrial Use Cases: Learning how to build GAN applications for Retail, Healthcare, Telecom, Media, Education, and HRTechНазвание: Generative Adversarial Networks with Industrial Use Cases: Learning how to build GAN applications for Retail, Healthcare, Telecom, Media, Education, and HRTech
Автор: Navin K. Manaswi
Издательство: BPB Publications
Год: 2020
Страниц: 134
Язык: английский
Формат: pdf
Размер: 10.1 MB

Лучшая книга по GAN. Генеративно-состязательная сеть - это алгоритм машинного обучения без учителя, построенный на комбинации из двух нейронных сетей, одна из которых генерирует образцы,а другая - пытается отличить правильные образцы от неправильных. Эта книга направлена ​​на упрощение понимания GAN для всех. Она очень важна для инженеров машинного обучения, исследователей, студентов, преподавателей и специалистов. Преподаватели университетов и онлайн-курсов найдут эту книгу очень интересной для обучения передового глубокого обучения, особенно генеративных состязательных сетей (GAN). Отраслевые специалисты, программисты, ученые науки о данных смогут изучить GAN с нуля.

Best Book on GAN.

This book aims at simplifying GAN for everyone. This book is very important for machine learning engineers, researchers, students, professors, and professionals. Universities and online course instructors will find this book very interesting for teaching advanced deep learning, specially Generative Adversarial Networks (GAN). Industry professionals, coders, and data scientists can learn GAN from scratch. They can learn how to build GAN codes for industrial applications for Healthcare, Retail, HRTech, EduTech, Telecom, Media, and Entertainment. Mathematics of GAN is discussed and illustrated. KL divergence and other parts of GAN are illustrated and discussed mathematically. This book teaches how to build codes for pix2pix GAN, DCGAN, CGAN, styleGAN, cycleGAN, and many other GAN. Machine Learning and Deep Learning Researchers will learn GAN in the shortest possible time with the help of this book.

What will you learn:
- Machine Learning Researchers would be comfortable in building advanced deep learning codes for Industrial applications
- Data Scientists would start solving very complex problems in deep learning
- Students would be ready to join an industry with these skills
- Average data engineers and scientists would be able to develop complex GAN codes to solve the toughest problems in computer vision

Key Features:
- Understanding the deep learning landscape and GAN’s relevance
- Learning basics of GAN
- Learning how to build GAN from scratch
- Understanding mathematics and limitations of GAN
- Understanding GAN applications for Retail, Healthcare, Telecom, Media and EduTech
- Understanding the important GAN papers such as pix2pixGAN, styleGAN, cycleGAN, DCGAN
- Learning how to build GAN code for industrial applications
- Understanding the difference between varieties of GAN

Who this book is for:
This book is perfect for machine learning engineers, data scientists, data engineers, deep learning professionals and computer vision researchers. This book is also very useful for medical imaging professionals, autonomous vehicles professionals, retail fashion professionals, media & entertainment professional, edutech and HRtech professionals. Professors and Students working in machine learning, deep learning, computer vision and industrial applications would find this book extremely useful.

Скачать Generative Adversarial Networks with Industrial Use Cases: Learning how to build GAN applications for Retail









НЕ РАБОТАЕТ TURBOBIT.NET? ЕСТЬ РЕШЕНИЕ, ЖМИ СЮДА!





Автор: Ingvar16 29-10-2020, 21:59 | Напечатать | СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:
    {related-news}

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MyMirKnig.ru  ©2019     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности