Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: Practical MLOps: Operationalizing Machine Learning Models
Автор: Noah Gift and Alfredo Deza
Издательство: O’Reilly Media
Год: 2021
Формат: ePUB
Страниц: 886
Размер: 19 Mb
Язык: English

Getting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models.

Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start.

You'll discover how to:

Apply DevOps best practices to machine learning
Build production machine learning systems and maintain them
Monitor, instrument, load-test, and operationalize machine learning systems
Choose the correct MLOps tools for a given machine learning task
Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware









НЕ РАБОТАЕТ TURBOBIT.NET? ЕСТЬ РЕШЕНИЕ, ЖМИ СЮДА!





Автор: vitvikvas 15-09-2021, 03:53 | Напечатать | СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.





 MyMirKnig.ru  ©2019     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности