Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: A Simple Guide to Retrieval Augmented Generation
Автор: Abhinav Kimothi
Издательство: Manning Publications
Год: 2025
Страниц: 258
Язык: английский
Формат: True/Retail PDF, True/Retail EPUB
Размер: 35.6 MB

Everything you need to know about Retrieval Augmented Generation in one human-friendly guide.

Generative AI models struggle when you ask them about facts not covered in their training data. Retrieval Augmented Generation—or RAG—enhances an LLM’s available data by adding context from an external knowledge base, so it can answer accurately about proprietary content, recent information, and even live conversations. RAG is powerful, and with A Simple Guide to Retrieval Augmented Generation, it’s also easy to understand and implement!

In A Simple Guide to Retrieval Augmented Generation you’ll learn
• The components of a RAG system
• How to create a RAG knowledge base
• The indexing and generation pipeline
• Evaluating a RAG system
• Advanced RAG strategies
• RAG tools, technologies, and frameworks

A Simple Guide to Retrieval Augmented Generation shows you how to enhance an LLM with relevant data, increasing factual accuracy and reducing hallucination. Your customer service chatbots can quote your company’s policies, your teaching tools can draw directly from your syllabus, and your work assistants can access your organization’s minutes, notes, and files.

Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications.

About the book
A Simple Guide to Retrieval Augmented Generation makes RAG simple and easy, even if you’ve never worked with LLMs before. This book goes deeper than any blog or YouTube tutorial, covering fundamental RAG concepts that are essential for building LLM-based applications. You’ll be introduced to the idea of RAG and be guided from the basics on to advanced and modularized RAG approaches—plus hands-on code snippets leveraging LangChain, OpenAI, Transformers, and other Python libraries.

Chapter-by-chapter, you’ll build a complete RAG enabled system and evaluate its effectiveness. You’ll compare and combine accuracy-improving approaches for different components of RAG, and see what the future holds for RAG. You’ll also get a sense of the different tools and technologies available to implement RAG. By the time you’re done reading, you’ll be ready to start building RAG enabled systems.

About the reader
For data scientists, Machine Learning and software engineers, and technology managers who wish to build LLM-based applications. Examples in Python - no experience with LLMs necessary.

About the author
Abhinav Kimothi is an entrepreneur and Vice President of Artificial Intelligence at Yarnit. He has spent over 15 years consulting and leadership roles in data science, machine learning and AI.

Скачать A Simple Guide to Retrieval Augmented Generation









НЕ РАБОТАЕТ TURBOBIT.NET? ЕСТЬ РЕШЕНИЕ, ЖМИ СЮДА!





Автор: Ingvar16 Сегодня, 03:39 | Напечатать | СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:
    {related-news}

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MyMirKnig.ru  ©2019     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности