Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: Enhancing LLM Performance: Efficacy, Fine-Tuning, and Inference Techniques
Автор: Peyman Passban, Andy Way, Mehdi Rezagholizadeh
Издательство: Springer
Год: 2025
Страниц: 189
Язык: английский
Формат: pdf (true), epub
Размер: 20.5 MB

This book is a pioneering exploration of the state-of-the-art techniques that drive Large Language Models (LLMs) toward greater efficiency and scalability. Edited by three distinguished experts—Peyman Passban, Mehdi Rezagholizadeh, and Andy Way—this book presents practical solutions to the growing challenges of training and deploying these massive models. With their combined experience across academia, research, and industry, the authors provide insights into the tools and strategies required to improve LLM performance while reducing computational demands.

This book is more than just a technical guide; it bridges the gap between research and real-world applications. Each chapter presents cutting-edge advancements in inference optimization, model architecture, and fine-tuning techniques, all designed to enhance the usability of LLMs in diverse sectors. Readers will find extensive discussions on the practical aspects of implementing and deploying LLMs in real-world scenarios. The book serves as a comprehensive resource for researchers and industry professionals, offering a balanced blend of in-depth technical insights and practical, hands-on guidance. It is a go-to reference book for students, researchers in Computer Science and relevant sub-branches, including Machine Learning, computational linguistics, and more.

The main theme of this book is efficiency and the pivotal topic is “scale”. More specifically, in this volume, we aim to examine the reasons behind the substantial size of LLMs, investigate the intricacies of their design and the consequent implications. We will discuss the formidable challenges they pose, as well as the unprecedented opportunities they offer. The discussion extends to various technical considerations such as model training, selection of data sets, and the architecture of LLMs. In the first introductory chapter, we lay out a roadmap for the journey ahead, detailing what readers can expect from each subsequent section and chapter of the book. Additionally, we provide the basic fundamentals necessary to understand LLMs, ensuring that regardless of their prior knowledge, readers have a solid foundation from which to explore more advanced concepts throughout the book. The following chapters will not shy away from (sometimes quite deep) detail, as dissecting the intricacies of LLMs is critical to aid understanding of this new paradigm.

Скачать Enhancing LLM Performance: Efficacy, Fine-Tuning, and Inference Techniques









НЕ РАБОТАЕТ TURBOBIT.NET? ЕСТЬ РЕШЕНИЕ, ЖМИ СЮДА!





Автор: Ingvar16 Вчера, 17:26 | Напечатать | СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:
    {related-news}

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MyMirKnig.ru  ©2019     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности