|
|
|
|
|
|
|
| |
|
Название: Building Intelligent Apps with .Net and Azure AI Services: Start Your Journey in Building Intelligent Solutions Автор: Ashirwad Satapathi Издательство: Apress Год: 2024 Страниц: 209 Язык: английский Формат: pdf Размер: 17.0 MB
Building Intelligent Apps with .NET and Azure AI Services is a comprehensive book that will equip readers with the knowledge and skills to develop intelligent solutions by leveraging the capabilities of Azure AI Services. This book adopts a practical and example-based approach, ensuring that readers can easily grasp the subject matter and apply it effectively. The book begins by covering essential topics that lay the foundation for understanding Azure AI Services. Readers will gain a solid understanding of how to provision Azure AI Services and seamlessly integrate them into their .NET applications. Through detailed and illustrative examples, readers will be guided step-by-step in building intelligent solutions that target a range of platforms. In addition to the core concepts, the book delves into various AI services, offering practical guidance on building solutions for a wide array of scenarios. From text translation to image classification, readers will learn how to harness the power of Azure AI Services to solve complex problems. For developers, cloud architects, and tech enthusiasts looking forward to building scalable and intelligent solutions using Azure AI Services and .NET. |
Разместил: Ingvar16 31-08-2024, 22:28 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: От математики к обобщенному программированию Автор: Степанов А.А., Роуз Дэниэл Э. Издательство: ДМK Год: 2016 Cтраниц: 264 Формат: pdf (ocr) Размер: 46 мб Язык: русский
В этой основательной и вместе с тем доступной книге авторы объясняют принципы обобщенного программирования и стоящее за ними понятие математической абстракции. Любой достаточно квалифицированный программист, умеющий логически мыслить, уже обладает достаточными знаниями для прочтения этой книги. Авторы на удивление доходчиво сообщают необходимые сведения из общей алгебры и теории чисел. Они объясняют, какие проблемы должны были разрешить математики, и показывают, как найденные ими решения переводятся на язык обобщенного программирования и позволяют создать эффективный и элегантный код. |
Разместил: rivasss 31-08-2024, 20:00 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Leveraging Computer Vision to Biometric Applications Автор: Arvind Selwal, Deepika Sharma, Mukesh Mann, Sudeshna Chakraborty, Valentina E. Balas Издательство: CRC Press Год: 2025 Страниц: 358 Язык: английский Формат: pdf (true) Размер: 20.3 MB
Computer vision is an effective solution in a diverse range of real-life applications. With the advent of the Machine and Deep Learning paradigms, this book adopts Machine and Deep Learning algorithms to leverage digital image processing for designing accurate biometrical applications. In this aspect, it presents the advancements made in Computer Vision to biometric applications design approach using emerging technologies. It discusses the challenges of designing efficient and accurate biometric-based systems, which is a key issue that can be tackled via computer vision-based techniques. Original application-based research and review articles with model, build-data-driven applications using computational algorithms are included in different chapters. The reader will learn how different techniques can represent data-driven applications and their behaviors in order to extract key features. The book will enable researchers from academia and industry to share innovative applications and creative solutions to common problems using computer vision applications. |
Разместил: Ingvar16 31-08-2024, 12:50 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Practical Machine Learning Illustrated with KNIME Автор: Yu Geng, Qin Li, Geng Yang, Wan Qiu Издательство: Springer Год: 2024 Страниц: 312 Язык: английский Формат: pdf (true) Размер: 37.5 MB
This book guides professionals and students from various backgrounds to use Machine Learning in their own fields with low-code platform KNIME and without coding. Many people from various industries need use Machine Learning to solve problems in their own domains. However, Machine Learning is often viewed as the domain of programmers, especially for those who are familiar with Python. It is too hard for people from different backgrounds to learn Python to use Machine Learning. KNIME, the low-code platform, comes to help. KNIME helps people use Machine Learning in an intuitive environment, enabling everyone to focus on what to do instead of how to do. This book helps the readers gain an intuitive understanding of the basic concepts of Machine Learning through illustrations to practice Machine Learning in their respective fields. The author provides a practical guide on how to participate in Kaggle completions with KNIME to practice Machine Learning techniques. This textbook aims to provide a comprehensive and accessible introduction to AI and ML. It is structured into three parts: Introduction to AI Technology, Traditional Machine Learning, and Deep Learning. The first part lays the groundwork of essential knowledge, the second part explores various ML models and techniques, and the concluding part introduces the basics of Deep Learning. Primarily crafted for beginners, this textbook is also a valuable resource for anyone interested in the practical applications of AI and ML. Our aspiration is that readers will, in the spirit of Caesar’s renowned quote, “Veni Vidi Vici,” truly come, see, and conquer the basics of ML. |
Разместил: Ingvar16 31-08-2024, 07:38 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Metaheuristics Algorithm and Optimization of Engineering and Complex Systems Автор: Thanigaivelan R., Suchithra M., Kaliappan S., Mothilal T. Издательство: IGI Global Год: 2024 Страниц: 416 Язык: английский Формат: pdf (true), epub Размер: 23.6 MB
In the field of engineering, optimization and decision-making have become pivotal concerns. The ever-increasing demand for data processing has given rise to issues such as extended processing times and escalated memory utilization, posing formidable obstacles across various engineering domains. Problems persist, requiring not only solutions but advancements beyond existing best practices. Creating and implementing novel heuristic algorithms is a time-intensive process, yet the imperative to do so remains strong, driven by the potential to significantly lower computational costs even with marginal improvements. This book, titled Metaheuristics Algorithm and Optimization of Engineering and Complex Systems, is a beacon of innovation in this context. It examines the critical need for inventive algorithmic solutions, exploring hyperheuristic approaches that offer solutions such as automating search spaces through integrated heuristics. Designed to cater to a broad audience, this book is a valuable resource for both novice and experienced dynamic optimization practitioners. By addressing the spectrum of theory and practice, as well as discrete versus continuous dynamic optimization, it becomes an indispensable reference in a captivating and emerging field. With a deliberate focus on inclusivity, the book is poised to benefit anyone with an interest in staying abreast of the latest developments in dynamic optimization. |
Разместил: Ingvar16 30-08-2024, 14:39 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Essentials of Python A Lunchtime Learning Guide: Master the Programming Skills Needed in the Age of Generative AI, like ChatGPT, Efficiently and Effectively Автор: Tak Takamiya Издательство: Independently published Год: 2024 Страниц: 94 Язык: английский Формат: pdf, azw3, epub, mobi Размер: 10.1 MB
"Essentials of Python A Lunchtime Learning Guide" is a book designed for individuals with programming experience, aiming to help them learn the fundamentals of Python efficiently in a short period. With the emergence of Generative AI, such as ChatGPT, the role of programming is undergoing a transformation. Previously, the ability to understand a language inside out and write code from scratch, known as "output power," was considered the benchmark for programming proficiency. However, generative AI can now handle the "0 to 1" part of the process. Instead, humans need to focus more on "input power," the ability to understand written source code, and "analytical power," the ability to validate the code's validity. This book is tailored to this new programming style, aiming to help readers acquire the minimum knowledge required to get started with Python in the shortest possible time. The primary focus is on skimming through the source code, understanding the overall structure and connections, and grasping the program's behavior. This book aims to acquire the foundational knowledge for understanding the language, such as Python's basic syntax, data types, functions, classes, arrays, etc. The contents are written assuming a Python 3.10 environment. As of May 2024, the latest version is 3.12, but using too new a version may result in insufficient learning by generative AI or scarce information on the web, leading to reduced development efficiency, so a stable version with ample track record is used. Each chapter provides explanations using sample code to deepen practical understanding. Explanations of the execution results are also included to understand the behavior of the code. |
Разместил: Ingvar16 30-08-2024, 11:52 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Quantum Computing and Cryptography in Future Computers Автор: Shyam R. Sihare Издательство: IGI Global Год: 2024 Страниц: 380 Язык: английский Формат: pdf (true), epub Размер: 28.6 MB
In recent decades, computing has undergone rapid evolutions and groundbreaking developments that affect almost every sector across the world. The developments of quantum computing and quantum cryptography are similarly revolutionizing computing and security with lasting impacts and implications. Quantum computing and quantum cryptography will pave the path for new opportunities for the future of computing. Quantum Computing and Cryptography in Future Computers discusses quantum computing and quantum cryptography principles and their impact on future computers. It includes coverage of the role of quantum computing to overcome the issues of current security methods. It also discusses the application of quantum computing in various areas like security, blockchain, and more. Covering topics such as attack detection, Machine Learning, and quantum key distribution, this premier reference source is an ideal resource for developers, engineers, practitioners, security experts, students and educators of higher education, librarians, researchers, and academicians. |
Разместил: Ingvar16 30-08-2024, 05:58 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Грокаем алгоритмы, 2-е издание Автор: Адитья Бхаргава Издательство: Питер Год: 2024 Страниц: 352 Язык: русский Формат: pdf Размер: 12.8 MB
Алгоритмы — это пошаговые инструкции решения задач, большинство из которых уже были кем-то решены, протестированы и доказали свою эффективность. Второе издание «Грокаем алгоритмы» упрощает изучение, понимание и использование алгоритмов. В этой книге вы найдете простые и внятные объяснения, более 400 забавных иллюстраций и десятки примеров. Ее чтение — лучший способ раскрыть всю мощь алгоритмов и подготовиться к интервью по программированию. Глубоких знаний математики не требуется! Вы узнаете о главных алгоритмах, позволяющих ускорить работу программ, упростить код и решить распространенные проблемы программирования. Начните с сортировки и поиска, а затем развивайте свои навыки для решения сложных задач, таких как сжатие данных и искусственный интеллект. Научитесь сравнивать эффективность различных алгоритмов. Во втором издании даны новые, более подробные описания деревьев, NP-полные задачи, а код примеров обновлен на Python 3. Пора грокать алгоритмы по-новому! |
Разместил: Ingvar16 29-08-2024, 18:43 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Принципы параллельного программирования Автор: Лин К., Снайдер Л. Издательство: Издательство Московского университета Год: 2013 Cтраниц: 408 Формат: pdf Размер: 53 мб Язык: русский
В век развития многоядерной процессорной архитектуры тема параллельного программирования для инженеров и проектировщиков компьютерных систем становится очень важной. |
Разместил: rivasss 29-08-2024, 15:17 | Комментарии: 0 | Подробнее
| | | |
|
| |
|
|
|
|
|
|
| |
|
Название: Confident AI: The Essential Skills for Working With Artificial Intelligence Автор: Andy Pardoe Издательство: Kogan Page Год: 2024 Страниц: 297 Язык: английский Формат: pdf (true), epub Размер: 23.0 MB
Discover new skills, expand your knowledge and build your confidence through this fascinating and accessible guide to working with AI. Artificial Intelligence (AI) has become an integral part of our everyday lives. But it remains an elusive, complex and intimidating technology that has hundreds of iterations and nuances. With Confident AI, build your confidence when working with AI by learning the fundamentals and discovering the intricacies of the industry. Andy Pardoe has spent decades working with AI, not only as an influential academic but also within corporations and as a consultant and accelerator for AI start-ups. He draws upon his expertise and lived experience to offer the essential skills and tools that you need to succeed with Artificial Intelligence, whether you are pursuing it as a career or simply working with AI in your work-life. Certainly, the capabilities of AI and ML have improving significantly with advances such as Deep Learning (DL) and Reinforcement Learning (RL) over the last decade or so, with many narrow applications having been demonstrated to deliver performance equivalent to human levels of ability. Deep Learning algorithms and architectures set the groundwork on which much of the recent progress has been made and certainly form the foundation for the popular Generative AI applications we see today. Machine Learning is a subfield of Artificial Intelligence that involves training algorithms to automatically learn and improve from data without being explicitly programmed. This is a significant departure from how we have built technology systems and applications previously and we are still discovering the best ways to do it to help us avoid things like decision bias and other ethical challenges. This chapter introduces the basic concepts of Machine Learning, including common algorithms and approaches like supervised and unsupervised learning. |
Разместил: Ingvar16 29-08-2024, 11:03 | Комментарии: 0 | Подробнее
| | | |
|
| |
br>
|