Добавить в избранное
Форум
Правила сайта "Мир Книг"
Группа в Вконтакте
Подписка на книги
Правообладателям
Найти книгу:
Навигация
Вход на сайт
Регистрация



Реклама



Название: Hardware Architectures for Deep Learning (Materials, Circuits and Devices)
Автор: Masoud Daneshtalab, Mehdi Modarressi
Издательство: The Institution of Engineering and Technology
Год: 2020
Формат: PDF
Страниц: 328
Размер: 17 Mb
Язык: English

This book presents and discusses innovative ideas in the design, modelling, implementation, and optimization of hardware platforms for neural networks.

The rapid growth of server, desktop, and embedded applications based on deep learning has brought about a renaissance in interest in neural networks, with applications including image and speech processing, data analytics, robotics, healthcare monitoring, and IoT solutions. Efficient implementation of neural networks to support complex deep learning-based applications is a complex challenge for embedded and mobile computing platforms with limited computational/storage resources and a tight power budget. Even for cloud-scale systems it is critical to select the right hardware configuration based on the neural network complexity and system constraints in order to increase power- and performance-efficiency.

Hardware Architectures for Deep Learning provides an overview of this new field, from principles to applications, for researchers, postgraduate students and engineers who work on learning-based services and hardware platforms.









НЕ РАБОТАЕТ TURBOBIT.NET? ЕСТЬ РЕШЕНИЕ, ЖМИ СЮДА!





Автор: vitvikvas 29-05-2020, 09:31 | Напечатать | СООБЩИТЬ ОБ ОШИБКЕ ИЛИ НЕ РАБОЧЕЙ ССЫЛКЕ
 
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.





С этой публикацией часто скачивают:
    {related-news}

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.


 MyMirKnig.ru  ©2019     При использовании материалов библиотеки обязательна обратная активная ссылка    Политика конфиденциальности