Название: Simulating Speckle With Mathematica Автор: Joseph W. Goodman Издательство: Society of Photo-Optical Instrumentation Engineers (SPIE) Год: 2022 Страниц: 104 Язык: английский Формат: pdf (true) Размер: 71.3 MB
The speckle phenomenon is ubiquitous, occurring in all regions of the electromagnetic spectrum, as well as in both ultrasound and synthetic-aperture-radar imaging. Speckle occurs whenever radiation is reflected from a surface that is rough on the scale of a wavelength, or is passed through a diffusing surface that introduces random path-length delays on the scale of a wavelength. This book is devoted to simulation of speckle phenomena using the software package Mathematica®. Various techniques for simulating speckle are discussed. Simulation topics include first-order amplitude and intensity statistics, speckle phenomena in both imaging and free-space propagation, speckle at low light levels, polarization speckle, phase vortices in speckle, and speckle metrology methods.
Speckle phenomena can be seen in many different imaging modalities, including acoustical imaging (e.g., medical ultrasound) and microwave imaging (e.g., synthetic-aperture radar imaging). This book focuses on simulating optical speckle with Mathematica®, but the same methods used can in many cases be applied to other imaging modalities. The reader may wonder why Mathematica has been chosen as the software package for this book. There are several reasons for this choice. First, and most important, Mathematica allows the interspersing of both continuous and discrete calculations under one umbrella. Second, using Mathematica, text, code, and illustrations can be included in the same document. Third, using Mathematica we can create dynamic figures, parameters of which the user can change at will. However, such manipulation cannot be performed in the printed version of the book, so we have avoided manipulable figures in what follows and replaced them by arrays of static figures. Lastly, this author loves Mathematica for its flexibility and comprehensiveness. It seems there are almost an infinite set of capabilities of the program, many of which lie hidden for the novice user but which gradually are revealed as the use of the program increases. This book has been written entirely in Mathematica. It can be read with the full program Mathematica or with the free program Wolfram Player available for download from the Wolfram site. The Mathematica files for all chapters can be found at the following URL.